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ABSTRACT

Paper maps are an important but unwieldy data format. To increase its utility, copi-
ous amounts of map data have been scanned into a digital map knowledge base.
The next task in this knowledge base is to reduce this data to its underlying feature
form suitable for analysis. The size of the task requires high speed, at least at the
60,000 pixels per second rate that data can be read from an optical disk. We
describe a building-block, neural network, analog VLSI chip set comprising a
fully-parallel 32x32 seven bit synaptic array, and a similar array with neurons inte-
grated along the major diagonal. This set has a 140,000 feed forward passes pcr
second processing rate, sufficient for map processing. We also describe a new
learning algorithm compatible with analog VLSI. The algorithm combines dynam-
ically evolving architecture with limited gradient descent back propagation for
efficient and versatile supervised learning. To enable running of the learning al go-
rithm in hardware, synapse circuits were paralleled for additional quantization  lev-
els. As an initial proof it was applied to the two input parity problem. The
hardware-in-the-loop learning system allocated 1–3 hidden neurons for the exclu-
sive-or problem. For the more complicated map separates problem, hardware pw-
forrnance compares favorably with a software simulation and two statistically
based classifiers.

1. Introduction:
Map data is predominantly stored in color printed sheet maps. This has a variety of problems
ranging from the transport and storage of the wealth of existing map data, as well as its rapid
reproduction and manipulation for end-user products. This problem spans both civilian and mili-
tary domains. As a first attempt at mitigating these problems, the Army has begun to scan the
maps into a 24-bit per pixel format (1 byte each; red, green, and blue) using high-resolution scan-
ners and storing it on CD-ROM optical disks [DMA89]. This generates about 108 pixels per map
sheet with 24 bits per pixel. The many hundreds of thousands of map sheets overwhelm even opti-
cal storage capabilities. Furthermore, the user of the maps is not interested in the exact color of
each pixel—which suffers from processing variations, aging, and extraneous, aesthetic varia-
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tions—rather, they would prefer to be able to manipulate aspects of the data such as displaying the
primary road network, or ascertaining whether a particular vector crosses any river obstacles. In
short, they are interested in the map features.

As a step toward reducing the storage demand while at the same time transforming the
data into a format suitable for user analysis, the pixels are classified into feature classes. This
reduces the storage to Iog(number of feature classes) bits per pixel. For a small number of classes
this reduction in data is substantial. Once classified, data manipulation is greatly simplified. A
neural network is chosen for the task for two reasons. First, as described in [Lee90], neural net-
works generate optimal decision surfaces. Second, a key requirement of the task is to avoid any
processing bottlenecks beyond the limitation of the CD-ROM access rate. This implies that the
classifier must process pixels as fast as they can be read from the optical storage, that is, 60,000
pixels per-second.

- -
The inherently parallel design of a neural network as well as the biologically proven capa-

bility of scaling to tremendous levels of parallelization using low precision, non-uniform, and
unreliable components suggest a strong potential for building high-speed massively-parallel neu-
ral computers even with low-precision components. Many neural applications would benefit by
the tremendous speed advantage offered by fully parallel hardware implementations, wherein
each connection (synapse) and processing unit (neuron) is an independent circuit. Analog Wry
Large Scale Integration (VLSI) appears particularly promising since it offers higher neural and
synaptic densities than most digital technologies [Ebe92], at lower power consumption. How-
ever, a primary advantage of general purpose digital architectures—programmability—is lost in
fully-parallel architectures. An alternative to designing an analog VLSI chip for each neural archi-
tecture is to make building blocks arrays of neurons and synapses that can be connected and cas-
caded for many disparate architectures [Ebe89]. In this paper, we describe a pair of such building
block chips, and two applications that use cascading in three different dimensions.

One promise of neural networks lies in their ability to ‘learn’ to characterize data based on
limited training data. However, studies have shown that some traditional learning algorithms
require a high degree of weight quantization (14-16 bits) [Hoe92,  H0190] and circuit precision[-
Ebe88]; therefore, new algorithms tolerant of the weight quantization,  noise, and other non-ideal
effects of analog technology must be developed. Several such algorithms have already been
reported[e.g.  And90, Ebe90]. However, the neural network community has recently begun to
favor learning rules that evolve the network architecture, as opposed to older algorithms that
forced the user to preselect (often by trial and error) a fixed architecture. Below, we present an
architecture-evolving, VLSI-compatible learning rule that was executed on the building-block
chips and tested using the 2-input parity problem. TO overcome the 7-bit synaptic quantization
limitation of our building-block design, synapse circuits were cascaded in an interesting way
(piggy-backing synapses) to obtain 11 bits of effective quantization. Additionally, the building-
block chips were also cascaded laterally to increase the array size to 64x64 high-precision syn-
apses that fully connected the 64 neurons. These were applied to the map-separates task. Compari-
sons were made between the results of software simulation, the hardware using the above
mentioned learning, and two theoretically optimal (but computationally  slow) statistical tech-
niques. 1
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2. Neural Hardware:
In any neural network circuit, there are two basic components: synapse and neuron. The synapse
multiplies an input signal by a stored weight value while the neuron maps the sum of several such
synapse outputs via a non-linear sigmoidal transfer function. By building these simple compo-
nents in fully-parallel hardware architectures, the promised speed of neural networks’ parallelism
is achieved.

JPL has developed a variety of such structures on cascadable building block VLSI chips
capable of executing virtually any neural network architecture, from feed forward to feed back.
The processing is asynchronous, analog, and fully parallel, implying high speed. With a one-
microsecond neuron time constant and about 1000 synapses (weights), the chips are capable of a
gigs-connection per second speed. Our synapse design is based on a static random access memory

-. (SRAM) with 7 bits (6 bits + sign bit) of resolution having two-quadrant current multipliers
[Mo090]. Externally the synapses appear as a digital memory so that a wlite to the appropriate
location changes a synapse value. The neuron design incorporates wide-range, variable-slope, sig-
moid-like gain characteristics. Measurements show that the neural network chips can complete a
feed-forward pass in 7 microseconds implying a processing rate exceeding 140,000 passes per-
second. This is more than twice the required processing rate for the map separates problem. Two
of the building-block designs are described in detail in the following subsections.

2.1. Synapse Chip Design
JPL has developed a 32x32 synaptic array VLSI chip with 32 input lines and 32 output lines
[Du092]. Since voltage outputs can be distributed to many high impedance inputs and a virtual-
ground node can sum the currents from many sources, cascadability is aided by coding neuron
inputs as currents and neuron outputs as voltages [Ebe88]. The input lines distribute a voltage to
32 synapses in the same column, and the output currents of 32 synapses in the same row are
dumped onto a common output line. The relative strength of the synapses is controlled by a global
input parameter.

The basic synaptic circuit, shown in Figure 1, consists of three blocks: voltage to current
(V-I) convertor; six-bit Digital Analog Convertor (DAC); and current steering circuit. The V-I
convertor gain is determined by transconductance  between a global voltage source vbia~ and gate
voltage Vin of Q1. The current of the V-I convertor is mirrored to the six-bit DAC that includes a
series of six cascaded transistors Q3-Q8 and a series of pass transistors DO–D5. Q3–Q8 are scaled
1:2:4:8:16:32 so that each represents one of six bits [Mo090]. The weight value is stored in a
static memory latch; each bit of which controls one of DO–D5. The DAC output is the total current
dumped on the common line. The sign bit controls the direction of output current via trmsistors
D6 and D6 in the current steering circuit. When Dd is on and ~fj off, the input current is mirrored
from Vdd to the output line. When DG is off and ~(j on, the input current is drawn directly from the
output line.

The basic chip can fully connect 32 neurons to either the same 32 neurons for a feedback
circuit or 32 other neurons for a feed-forward circuit. The cascadability of these chips allows us to
expand these chips in up to three different dimensions as required by the desired neurtil network
architecture, To expand the number of inputs, synapse chips are added to increase the number of
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columns in the array and corresponding outputs are connected together (Figure 2a). Additional
outputs are added similarly (Figure 2b).

In addition to increasing the size of the array, the resolution of the synapses can be
increased by cascading in a third dimension. The relative strength of a synapse within a chip is
determined by a global reference signal. By piggy-backing (Figure 2c) an additional lower-
strength synapse chip-in effect paralleling each synapse in the array with the respective synapse
in the piggy-backed chip-the weight values could be resolved beyond the inherent 7 bits of accu-
racy to a nominal 13 bits (12 bits plus sign). While the resulting response using all 13 bits was not
linear or even monotonic, using only the 11 most significant bits, the response was linear as
desired. For a higher precision application, the hardware input-output response could be measured
and a look-up table to order the responses created that uses all 13 bits.

-- 2.2. Synapse-Neuron Composite Chip Design
The synapse chip provides a flexible and powerful method for connecting neurons together. For
the neurons, rather than a chip with only neurons requiring the same 32 inputs and 32 outputs as
the synaptic array, we replace one diagonal of the synaptic array with 32 neurons in a second conl-
posite chip as shown in Figure 3. The neuron schematic is shown in Figure 4. It is composed of
three components: a comparator, an I-V convertor, and a gain controller. The input to the neuron
is via a single line carrying all the currents from the connected synapses. A negative feedback cir-
cuit forces a virtual ground potential onto the summing (input) node. The comparator is high or
low depending on whether the input current is positive or negative. This in turn switches on either
Q1 or Q2 so that the input node sinks or sources all the current from the summing line completing
the virtual ground circuit. One of two parallel circuits drives the output depending on whether Q1

or Q2 is on. We describe just the former circuit for simplicity. Current mirrors replicate the input
and invert the output so that Q6 is off and Q8 is sourcing the input current. Transistors Qg and Qlo

are always on, sourcing a current controlled by Ickl. With two transistors sourcing cunent into the
VOut node and only one sinking, channel length modulation causes the output potential to raise.
The resulting input output characteristic is sigmoidal.  Figure 5 shows that by adjusting Icwl, the
gain of the sigmoid can be controlled over a wide range.

These chips can be cascaded with the synapse chips to form large neural networks. To test
all the possible cascading dimensions, we have eight VLSI chips cascaded together. A two by two
checkerboard of synapse chips and synapse-neuron composite chips form a 64 neuron fully-inter-
connected array. Piggy backing four additional synapse chips results in 13-bit synapses.

3. Learning with Hardware
To introduce the learning with hardware problem, we first discuss usage issues, To map a given
neural network architecture onto a neuron-synapse array; all the array’s synapses are set to zero;
for each input and neuron in the architecture, one array neuron is assigned; if weigh~ are given,
these are scaled and quantized to match the hardware synapse resolution; and then the weights are
loaded into the corresponding array synapses.

This implies several technibal difficulties with which the hardware must contend. To start
with, weights in the network are bounded and have finite precision. In addition, because of the
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processing variances across VLSI hardware and the analog signals used, the network must con-
tend with non-uniformities in synapse responses, non-ideal neuron transfer functions, and a vari-
ety of noise sources. Inputs for the network are generated by designated input neurons. The bias
weight to each of these neurons is adjusted to provide the given input level to the network. Since
the inputs to neurons are controlled by weights, they too are constrained to a bounded range and
finite precision. The accuracy here is further limited since only the central, ‘linear’, region of the
sigmoidal  neuron transfer function is useful. Also, the neuron outputs are not in the range [0,1],
but have some voltage range determined by their operating characteristics. This is difficult to
compensate under the range and precision constraints. As a result, weights learned under an ideal
model cannot simply be down-loaded into the hardware and yet still find the performance at par
with the simulation results. Consequently hardware must be incorporated into the learning to cap-
ture these effects using so-called hardware-in-the-loop learning.

-- One challenge to executing learning with analog VLSI is finding an algorithm that is toler-
ant of these errors inherent to the technology [13be92]. Among algorithms that have been success-
fully applied are the Madaline III rule [And90], and a related gradient-descent based algorithm
[Ebe90]. Newer learning algorithms have sought to decrease learning time and obviate the user
from the need to predefine the system architecture. One such algorithm, Cascade Correlation [-
Fah90], starts with a perception architecture and allocates hidden neurons as needed. The new
Cascade Backprop algorithm proposed here combines the resource allocating structure of Cascade
Correlation with the gradient descent method described by Rummelhart et al.[Rum86].

3.1. Algorithm
The algorithm is summarized here for the case of a fixed training set. Initially, a feed-forward pcr-
ceptron architecture that simply connects each input to every output is mapped onto the fccdbuck
neural array. For a given set of input-output training patterns, the pseudoinverse has the property
that it minimizes the mean squared error (MSE) for this architecture assuming linear output
units[Dud73].  For the perception, the mapping from inputs to outputs can be turned into a linear
mapping after compensating for the non-linear sigmoid function. Therefore, the pseudoinver.w is
used to calculate directly the initial perception weights based on input and output patterns. Back
propagation learning is then used to adjust these weights. When either the system has converged
or a specified number of learning trials have been completed, the network is tested on the entire
training set. If the performance is satisfactory then learning stops. If not, then a hidden neuron is
added and connected via synapses between each of the input units and each of the outputs.

After this initial stage, learning continues by alternately first training both the synapses
connected to a new hidden unit and the output synapses via back propagation, and then adding a
new hidden neuron. Note that after training, the new hidden neuron’s input weights are frozen and
for the purposes of this algorithm the hidden neuron output is treated as another input. This n~ini-
mizes the number of synapses that must be trained through a hidden unit. Hidden units are added
until the desired level of performance is obtained.

In general, backprop requires weight values, network inputs, deviation between desirtxi
and network outputs, and neuron gradients at the cument input level. A key to fast learning is elX-
ciently generating these values. The hardware weights are digital values and are stored in parallel
on the host machine. The inputs could be measured at each backprop pass. Instead, they are mca-
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sured once at the beginning of the learning and stored on the host machine. The output deviation
is measured directly from the hardware. The neuron gradients are obtained directly from the hard-
ware by perturbing the bias at the neuron input and observing the perturbation at the neuron out-
put. These choices are motivated by the slow interface between the host machine and the current
test set up. Ideally each weight would be perturbed individually to generate a gradient with
respect to the weights that captures any non-uniformities and discrepancies between the ideal
model and the hardware, but this would greatly increase the load on the test setup interface. Dur-
ing back propagation, the learning rate is linearly decremented over time. The learning uses all 13
bits of precision as available, and though weight updates might occasionally be in error in magni-
tude and even sign, the stochastic nature of analog VLSI would eventually cause bridging of the
nonmonotonicities.

3.2. Results with 2-Input Parity
--

As an initial demonstration, the learning hardware was applied to the two-bit parity problem
(exclusive-or). After each neuron addition, 5000 back propagation trials were executed. Neurons
were added until the ‘true’ and ‘false’ outputs were within 25% of the output neuron’s top and
bottom voltage range, respectively. Theoretically only one hidden unit is required. Over 100 trials,
the algorithm added 1–3 hidden units with an average of 1.2. Figure 6 shows the hardware used in
these experiments: a single 32x32 synapse-neuron composite chip with a second piggy-backed
synapse chip. Simulation results have shown that Cascade Backprop consistently solves parity
problems with up to 7 inputs using only 4-6 hidden units, indicating larger problems are solvable.
To test this, we address a map data classification problem in the next section.

4. The Map Separates Classification Problem
The data set consists of a 305X200 pixel map fragment. A gray-scale rendition appears in Figure
7a. This data is to be classified into 7 feature classes corresponding to roads, rivers, forms, con-
tour lines, symbols/names, man-made structures, and open areas. An analyst generated a (mining
set, shown in Figure 7b, by hand classifying 3800 of the 61000 pixels. A key problem was design-
ing feature vectors for the classification problem. Using just the color information from each pixel
individually was not sufficient to generate accurate feature classification. Therefore, each pixel is
classified using a window of surrounding pixels so that a pixel is classified within its local con-
text. Analysis led to choosing a 3x3 window of pixels [Bro92]. Note that each pixel generates
three features for the red, green, and blue bytes so that a 3x3 window yields 27, 8-bit input fea-
tures.

Five approaches were taken to solve the map separates problem. The first two were by
software simulation using standard models of neurons and synapses. One network was trained
according to the Cascade Correlation algorithm, the other according to Cascade-Backprop. The
next method was the hardware-in-the-loop method using Cascade B.ackprop on the 64-neuron, 8-
chip hardware. For comparison, we used the standard statistical techniques of Bayesian unimodal
Gaussian and the nearest neighbors algorithm [Dud73]. The latter method is known to be asymp-
totically optimal (as the number of training samples grows large). The results appear in Table 1.
Gray-scale renditions of the classification output of the hardware and software neural networks
appear in Figures 8a and 8b respe&ively. We first note that the software neural network with Cas-
cade Correlation does as well as the nearest neighbor classifier, validating the use of a neural nct-

(6)



work. The Cascade Backprop did slightly worse. As expected, the hardware the loop performance
is lower. The 8% discrepancy between the hardware and the software can be explained as follows.

As outlined in Section 3, the current hardware set-up suffers from several technical dit’fi-
culties. Some of these we would expect to have an effect on accuracy although mitigated some-
what by the learning. For example, consider the limited input precision. Additional software
simulations show that rounding the 8-bit inputs to 4-bits reduces the accuracy by only 270
although using twice as many hidden neurons. Other systematic errors could be compensated for
completely by the hardware-in-the-loop learning. But, the slow communications through the cur-
rent set-up interface limits the amount of learning. Both of these deficiencies are being remedied
by newer hardware.

5. Summary- -
Classifying map data falls within the well-studied domain of pattern recognition and classifica-
tion. But its demand on speed requires novel approaches. Neural networks are known to achieve
as well a classification accuracy as other classification techniques while maintaining a compact
parallel representation. We described a neural network approach to map feature classification and
showed through simulation that it can achieve the best accuracy possible.

Reaching the necessary speed requires massively-parallel neural network hardware. Two
building-block neural network chips developed at JPL were introduced that feature asynchronous
parallel analog processing, and digital SRAM-like 7-bit weight storage. One features a 32x32
synapse interconnect array, and the other features 32 fully interconnected neurons. These chips
provide a basis for building arbitrary network architectures. In addition, multiple synapses can bc
so allocated that the effective synapse resolution is increased from 7 bits to 11 bits. As a demon-
stration of these capabilities, a 64 neuron fully interconnected network with 11 bit synapses was
made out of eight of these chips.

Biology shows sophisticated processing even under non-ideal conditions that are outside
the realm of conventional learning paradigms. Typical neural hardware has precision exceeding
biological systems, but still is beyond conventional learning capabilities. A new learning algo-
rithm for hardware was developed that allocates hidden neurons to an initial perception architec-
ture until errors are reduced to a specified level. Simulations of the parity problem (to 7 inputs)
and hardware execution of the 2-input problem suggested that the learning algorithm is robust aJld
consistent with respect to architectures produced. On the 2-input parity problem the algolithm
working with the hardware allocating 1.2 neurons on average out of a theoretical minimum of
one. The neural network hardware applied to the map separates problem, demonstrated the neces-
sary speed, exceeding the CD-ROM data rate, although its accuracy was somewhat less than that
projected by simulation. This discrepancy is explained by limitations of the current test setup.

Despite the inherent noise and nonlinearities of the individual analog VLSI circuits, at a
system level these neural networks gave satisfactory results. That two disparate applications could
be executed using the same chip set illustrates the power and versatility of the cascadable building
block approach for fully parallel hardware implementations of neural networks.
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Table 1: Results of different classifiers on the map classification problem

Paradigm Technique Classification
Accuracy

Cascade Correlation 91.2%
Software Neural Network

Cascade Backprop 90.0%

Hardware Neural Network I Cascade Backprop I 81.9% I

Nearest Neighbors 91.9%
Statistical Classifier

Bayesian-Unimodal Gaussian 89.8%

Figure 1: Circuit diagram of the 7-bit synapse showing the three functional blocks.

Figure 2: The three dimensions of cascading synapses: more inputs (a); more outputs (b); higher
precision (c).

Figure 3: A photograph of the synapse-neuron chip showing the diagonal array of 32 neurons.

Figure 4: Circuit diagram of the variable-gain neuron.

Figure 5: Measured characteristics of a variable-gain neuron.

Figure 6: Photograph showing the hardware interfaced with a computer. The CRT shows the neu-
ral net architecture. The left top inset shows the result of the 2-parity problem.

Figure 7: The original map image (a), and the training data (b).

Figure 8: Classification output of tie software (a) and hardware (b) neural network
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